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ABSTRACT

Coelliptic orbits can be defined as two orbits
that are coplanar and confocal. A property of coelliptic
orbits is that the difference in magnitude between aligned
radius vectors is nearly the same, regardless of where
within the orbits they are positioned. For this and
other reasons, coelliptic orbits are useful in rendezvous
trajectories for linking together the earlier part of the
chase vehicle trajectory where most of the altitude adjust-
ment and required phasing are achieved, with the terminal
portion of the rendezvous trajectory.

For conic coelliptic orbits, the differences in
perigee radii, apogee radii, and semi-major axes all have
the same value. When the aligned radius vectors are not
directed along the line of apsides, deviations from this
vaiue 4z nacur but they are surprisingly small for conic
coelliptic orbits of low eccentricity, typically being
about one foot maximum. For non-conic coelliptic earth
orbits, these deviations remain small but can increase to
100 to 200 feet due to differential perturbations caused
by the earth's asphericity.
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I. Introduction

In the concentric orbit rendezvous scheme used in
the Apollo and Apollo Applications Programs, the trajectory
of a chase vehicle from insertion into orbit to rendezvous
with an orbiting target vehicle is comprised of an initial
phase, a coelliptic orbit phase, and a terminal phase. The
completion of the initial phase occurs near one of the apogee
or perigee locations where the propulsive maneuvers that
accomplish most of the altitude adjustment and phasing are
usually confined to occur. The initiation point of the
terminal phase is generally considerably removed from this
point in order to provide for docking of the spacecraft in
daylight and a standardized design of the terminal phase.
The coelliptic orbit serves as a linking and storage orbit
for the chase vehicle, allowing it to have a small amount
of phasing capability while preserving the altitude adjust-
ment accomplished in the initial phase.

In the coelliptic orbit phase, the chase vehicle
travels in an orbit that is coelliptic with the target
vehicle orbit, i.e., the diff i
the chase vehicle radius vect vec
in the target orbit is nearly constant and independent of
the chase vehicle position within its orbit. While this
relationship is obviously satisfied for circular orbits, it
is not clear that such a condition does exist for elliptic
orbits. This memorandum investigates this feature and
presents methods of establishing coelliptic orbits.

II. Discussion

A. Geometric Characteristics

Coelliptic orbits can be defined as having the
following properties:

1. The orbits have a common occupied focus.

2. The orbits are coplanar.
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3. The perigees of the two orbits lie along the
same line from the focus.

4., The difference in perigee and apogee radii are
equal.

These conditions establish the meaning of "coelliptic”
with mathematical precision even for highly eccentric orbits.
While other definitions might be invented, this is the commonly
accepted one. In particular, Apollo and AAP guidance programs
are based on this definition. Such a pair of orbits are shown
in Figure 1. It follows that

2a2 = Ra + R =R, + Ah + R + Ah
2 P 1 1
= +
2al 2Ah

and

a2 = dl T oy,
a not unexpected relation between the semi-major axes. From
the equation for a conic evaluated at perigee,

2
a(l-e™) _
R 1+e cos £ £ =0,
it follows that
a, (l-e 2) a, (l-e 2)
R - Rp = 22 2’ 1
P, Py 1 + e, 1+ e

Ah - a,e

22+a

e

and
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a2%; T 21

radius
semi-major axis
eccentricity
true anomaly.

where

R
a
e
f

Since the distance between foci for any ellipse is equal to
2ae, the two ellipses have the same vacant focus also. If
the definition of coelliptic orbits had been taken initially
that they simply be coplanar and confocal, all of the above
characteristics could easily have been derived.

To see how well the differential radius relationship
is preserved around the orbit, the following equation is
necessary.

2 2
a2(l—e2) al(l—el )

-R, = - (1)
2 71 1+ e,cos fl 1 + e, cos fl

The exact error in AR, defined as EAR=AR-Ah, can be
evaluated by rearranging equation (1) 1nto Lie fullouwiuy LuLie.

fl—e 2 l1-e 2 \ -

1 2 2 Ah {
=Y £ - m—— + +.__
a1€1 ©°5 5 \}+el cos fl l+e2 cos fl‘f €5 (ah) (1 al)

no
~

It is clear that for non-circular coelliptic orbits, AR is not
equal to Ah exactly. It can be confirmed that EAR=0 at
fl=zero and 180 degrees. Furthermore, differentiating (2) with

respect to f,, it is found that the maximum value of this error
occurs when

n

cos fl = cos f
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where the radical must assume a positive sign. The corre-

sponding exact expression for the maximum error in AR is
given by

. , ,
_ 1 1 2 2, _ _. 2 .2
EARMAX = 2a1 (1 + EE) (1 > (el + e, ) —\Jl e, —\Jl e, ')
2 Ah
+ e, (Ah) (1+ EI) .

After expanding Jl - elz‘ Jl - ezz‘ in an infinite series, it
is seen that

1 2 2, _ _ ZI _ 2|_1 2 _ 2,2
1 5 (el + e, ) 1 e 1 e 1T B (el e, )

+ higher order terms in e, and e,.
After neglecting these higher order terms,

- L2

A" Z au 2 el
EAR = (ah) (1 + al)(1 + e, (1 + —E_) ).

MAX - €2

For AAP missions, Ah is typically about ten nautical miles and

a; is typically about 3650 nautical miles. Therefore 22 <<l and
1

v 2
EARMAX = e, (ah) .

For an outer orbit with a 185 nautical mile perigee altitude
and 210 nautical mile apogee altitude, e, ~ .0034 and

EARMAX = .71 feet! For an unlikely outer orbit with an 80

nautical mile perigee altitude and 300 nautical mile apogee
altitude, EARMAX is only about 55 feet. It is clear that for
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all practical conic coelliptic orbits, AR at any value of
fl can be taken equal to Ah with surprising accuracy.

An alternate exact expression for AR can be written
in terms of the eccentric anomalies of the two vehicles.

AR

I
o)

Ah + alel(cos E1 - COos E2).

2—Rl = a2(l - e, cos E2) - al(l - e; cos El)

It can be shown that the maximum value of EAR occurs when
sin El = sin E2 and cos El = -cos E,. An alternate exact

2
expression for the maximum error is then

EARMAX = 2alel cos ElM

where E, 1is given by
J.M - =

Ey 1-e £,
tan ——M = —————QL tan ——M
2 1 + e1 2

B. 1Initiation of the Chase Vehicle Coelliptic Orbit

At the conclusion of the initial phase, a
maneuver is required to establish the chase vehicle
orbit. The required direction and magnitude of the
vehicle velocity after the burn must be computed to

propulsive
coelliptic
chase
correctly

orient the spacecraft for the burn. This can easily be done
by computing the required radial and horizontal velocities of
the chase wvehicle as functions of the radial and horizontal
velocities of the target vehicle and other known orbital

characteristics.
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Assuming that the chase vehicle is traveling the
inner orbit of Figure 1, the magnitude of the total velocity
in the coelliptic orbit is easily computed from

2 2 1
\Y/ =yuls— - =— (3)
1 <%1 a;)

- Ah and

1l

where a1 a

1

2
2 2
R2 U

The radial velocity of the chase vehicle is given by

where h is the magnitude of the angular momentum. After
some algebraic manipulation, the exact expression for the
ratio of the radial velocities of the two vehicles is seen
to be

.5
° 1.5 2
/ -
;;(2> L% (4)
“\ a 2
< 1 1l -e
R2 1

where R2 is aligned with R, . For el2 <<1 and eg <<1

. a, \1.5 ]
Ry =<;—— R, . (5)

.
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The required horizontal velocity of the chase vehicle can
then be computed from

Vigm V1 - (Ry) . (6)

Alternatively, the horizontal velocity can be computed
direct from

= = X
VlH = R1 fl =5 (1 + el cos fl),

1
v R a; (1-e7) >
1H 2 1 1
V... | R, 2 (7)
2H 1 a, (l—e2 )
and
N { Rz\ {al \'5 o~
v. = | £l £ VoH (8)
1H \ Rl} \az /

where R, is again aligned with R, and (7) and (8) are exact

and approximate expressions respectively.

These expressions have been used to establish
coelliptic orbits in trajectory simulations made with the
Bellcomm Apollo Simulation Program. Simulations were made
for an outer orbit with a 185 nautical mile perigee altitude,
210 nautical mile apogee altitude, a Ah of ten nautical
miles, and with spherical and aspherical gravitational models
of the earth. For each of these conditions, various combi-

nations of the exact and approximate expressions for Rl and VH

as given by equations (4) through (8) were used with almost
identical results. When the spherical gravitational model
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of the earth was used, the maximum value of EAR encountered
through a complete revolution in the coelliptic orbit ranged
from two to five feet, depending upon which combination of
radial and horizontal velocity expressions were used. When
the aspherical gravitational model of the earth was used,

the maximum EAR encountered throughout a complete revolution
in the coelliptic orbit varied from 44 to 139 feet, depending
primarily upon where within the orbit the chase vehicle orbit
was established and to a much small extent, upon the
expressions used for the radial and horizontal velocities

at the establishment of the orbit.

Simulations were made with similar results for a
circular outer orbit of 235 nautical miles altitude and an
outer orbit with a 110 nautical mile perigee altitude and a
210 nautical mile apogee altitude. The maximum value of EAR
throughout a complete revolution varied from 42 to 134 feet
in the first case and from 7 to 166 feet in the latter case.

The logic for the coelliptic burn initiation in the
Command Module and Lunar Module computers uses the approxi-
mate equations (5) and (6) to determine the required velocity
vector of the chase vehicle.

ITTI. Summary

T ) PR e m e em P PR I RS —_——_—T 2 P P
Al AIUAD MW ell WDMIWUWEE LUIUE LW T LA MLLL ULWLA LD AalT VCLYy

effective in preserving a desired difference in magnitude
between aligned radius vectors in the chase and target vehicle
orbits. By coasting in its orbit for an appropriate interval
of time, the chase vehicle can achieve the required phase
relationship with the target vehicle for the terminal phase
without disturbing the altitude adjustment accomplished in

the initial phase of the rendezvous.

The deviation from the desired difference in
magnitude of the radii can be attributed primarily to the
perturbations due to the earth's asphericity and to a much
smaller degree, to the geometric characteristics of the
coelliptic orbits. For practical earth orbits, this deviation
due to the earth's asphericity can be as much as 100 to 200
feet while the deviation due to the geometric characteristics
is typically about one foot.

In establishing the chase vehicle orbit to be
coelliptic with the target vehicle orbit, simplified approxi-
mate expressions for the required radial and horizontal
velocities can be used with essentially no penalty in accuracy.
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1025-PHW-11i P. H. Whipple
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